
International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 662
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Web Care
Kavyashree K, A.Ananda Shankar

Abstract— Web applications are becoming more prevalent over the globe such as in corporate, public and also in government services today.
Web applications provide convenience and efficiency but it also encounters number of new security threats frequently, which could potentially
pose significant risks to any organization, if not handled properly. Web security vulnerabilities continually impact the risk of a web site. Performing
the attack requires several application attack techniques. These techniques are commonly referred to as the class of attack.
Keywords: Security threats, Vulnerabilities, Web Security

—————————— ——————————

1 INTRODUCTION

THE Open Web Application Security Project (OWASP) is

a worldwide not-for-profit charitable organization focused on
improving the security of software.
Our mission is to make software security visible, so
that individuals and organizations worldwide can make
informed decisions about true software security risks [1].
Vulnerability is a hole or a weakness in the application, which
can be a design flaw or an implementation bug that allows an
attacker to cause harm to the stakeholders of an application.
Stakeholders include the application owner, application users,
and other entities that rely on the application. The term
"vulnerability" is often used very loosely. However, here we need
to distinguish threats, attacks, and countermeasures.
Examples of vulnerabilities [3]

• Lack of input validation on user input
• Lack of sufficient logging mechanism
• Fail-open error handling
• Not closing the database connection properly

Attacks are the techniques that attackers use to exploit the
vulnerabilities in applications. Attacks are often confused with
vulnerabilities.

2 PROCEDURE FOR PAPER SUBMISSION

Kavyashree K is currently pursuing master’s degree in Advanced Information
Technology in Reva University, India, PH-+91 9739466588. E-mail:
kavyashreek36@gmail.com
A.Ananda Shankar is the Associate Professor in School of Computing and
Information Technology in Reva University, India

3 LITERATURE SURVEY
Web application security vulnerabilities detection
approaches [2]:
Number of security vulnerabilities in web application has grown
with the tremendous growth of web application in last two
decades. As the domain of Web Applications is maturing, large
number of empirical studies has been reported in web
applications to address the solution of vulnerable web
application. However, before advancing towards finding new
approaches of web applications security vulnerability detection,
there is a need to analyze and synthesize existing evidence based
studies in web applications area. To do this, we have planned to

conduct a systematic mapping study to view and report the state-
of-the-art of empirical work in existing.
The proposed solutions are mapped in my project
 (1) The software development stages for which the solution has
been proposed
(2) The web application vulnerabilities mapping according to
OWASP Top 10 security vulnerabilities.
A Survey on Web Application Security [4]
As web applications are increasingly used to deliver security
critical services, they become a valuable target for security at-
tacks. Many web applications interact with back-end database
systems, which may store sensitive information (e.g., financial,
health), the compromise of web applications would result in
breaching an enormous amount of information, leading to severe
economic losses, ethical and legal consequences. The Web
platform is a complex ecosystem composed of a large number of
components and technologies, including HTTP protocol,
webserver and server-side application development technologies
(e.g., CGI, PHP, ASP), web browser and client-side technologies
(e.g., JavaScript, Flash).

UNDERSTANDING WEB APPLICATION SECURITY
PROPERTIES, VULNERABILITIES AND ATTACK
VECTORS [5]

• SQL Injection
• Cross-Site Scripting
• Logic Correctness
• Input Validation
• Security by construction
• Security by verification

End-to-end Web Application Security
Web applications are important, ubiquitous distributed systems
whose current security relies primarily on server-side
mechanisms. This paper makes the end-to-end argument that the
client and server must collaborate to achieve security goals, to
eliminate common security exploits, and to secure the emerging
class of rich, cross-domain Web applications.
In order to support end-to-end security, Web clients must be
enhanced. We introduce Mutation-Event Trans-forms like:
Motivating Attacks
The Case for End-to-end Defenses
Server-side Defenses and their Limitations
New Client-side Security Mechanisms
Client-side Defenses and their Benefits

New Client-side Security Mechanisms worms, etc.

IJSER

http://www.ijser.org/
https://www.owasp.org/index.php/Category:OWASP_Video
https://www.owasp.org/index.php/Industry:Citations

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 663
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Web Server Security and Survey on Web Application
Security
A secure Web server provides a protected foundation for hosting
Web applications, and Web server configuration plays a critical
role in Web application's security. Badly configured virtual
directories, a common mistake, can lead to unauthorized access.

A forgotten share can provide a convenient back door, while an
overlooked port can be an attacker's front door.
Neglected user accounts can permit an attacker to slip by your
defenses unnoticed.
The fact that an attacker can strike remotely makes a Web server
an appealing target. Understanding threats to Web server and
being able to identify appropriate countermeasures permits to
anticipate many attacks and thwart the ever-growing numbers of
attackers.

Threats to Web Server and Countermeasures
The main threats to a Web server are:

• Profiling
• Denial of service
• Unauthorized access
• Arbitrary code execution
• Elevation of privileges
• Viruses, worms, and Trojan horses
• Attacks
• Common attacks used for profiling include:
• Port scans
• Ping sweeps
• NetBIOS and server message block (SMB) enumeration

4 VULNERABILITIES
4.1 CROSS SITE SCRIPTING
Cross site scripting is a type of computer security vulnerability
typically found in web applications. XSS enables attackers to
inject client-side scripts into web pages viewed by other users.
A cross-site scripting vulnerability may be used by attackers to
bypass access controls such as the same-origin policy.
Request validation is a feature that contains potentially
dangerous content. This exploit is typically referred to as a cross-
site scripting (XSS) attack
Categories of XSS attacks:

• Stored: The injected code is permanently stored
(in a database, message forum, visitor log, etc.)

• Reflected - Attacks that are reflected take some other
route to the victim (through an e-mail message, or
bounced off from some other server)

4.1.1 Countermeasure for CSS attack

We can encode all the values coming as input from page or from
web service or from API. XSS flaws occur whenever an
application takes user supplied data and sends it to a web
browser without first validating or encoding that content. XSS
allows attackers to execute script in the victim's browser which
can hijack user sessions, deface web sites, possibly introduce

4.2 Cross Site Request Forgery (CSRF)
A CSRF attack forces a logged-on victim’s browser to send a pre-
authenticated request to a vulnerable web application, which
then forces the victim’s browser to perform a hostile action to the
benefit of the attacker. CSRF can be as powerful as the web
application that it attacks. Malicious website can perform action
using your authentication. Server authenticates user and
response from the server that includes authentication cookie.
Without logging out, user visited a malicious website. That
malicious website may contain malicious image link, post action
to site user is logged in, malicious script or Ajax call which will
be totally hidden from visitor. This is the "cross site" part of CSRF
attack.
Applications are vulnerable if any of following:

• Does not re-verify authorization of action
• Default login/password will authorize action

Action will be authorized based only on credentials which are
automatically submitted by the browser such as session cookie,
Kerberos token, basic authentication, or SSL certificate etc.

4.2.1 Countermeasure for CSRF attack

XSS is a major channel for delivery of CSRF attacks. Generate
unique random tokens for each form or URL, which are not
automatically transmitted by the browser. Do not allow GET
requests for sensitive actions. For sensitive actions, re-
authenticate or digitally sign the transaction. User will click the
image or any button (filling forms and clicking submit), then
browser will happily send the authentication cookie for the
request because post request is like
(www.examplewebsite.com/account/delete)

Figure 4.2.1: CSRF attack

4.3 SQL injection
SQL injection is a type of security exploit in which the attacker
adds Structured Query Language (SQL) code to a Web form
input box to gain access to resources or make changes to data. An
SQL query is a request for some action to be performed on a
database. Typically, on a Web form for user authentication, when
a user enters their name and password into the text boxes
provided for them, those values are inserted into a SELECT
query. If the values entered are found as expected, the user is
allowed access; if they aren't found, access is denied. However,
most Web forms have no mechanisms in place to block input

other than names and passwords. Unless such precautions are
taken, an attacker can use the input boxes to send their own

IJSER

http://www.ijser.org/
http://www.examplewebsite.com/account/delete
http://searchsecurity.techtarget.com/definition/exploit
http://searchsqlserver.techtarget.com/definition/SQL
http://searchsqlserver.techtarget.com/definition/query

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 664
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 6 REFERENCES

[1] “About Critical Web Application Security Risks”

request to the database, which could allow them to download the
entire database or interact with it in other illicit ways. SQL
Injection. There are various approach in Entity Framework like
Schema First Approach, Model First Approach and Code First
Approach

Figure 4.3.1: Basic SQL injection

4.3.1 Countermeasure for SQL injection

 Use language specific libraries to perform the same
functions as shell commands and system calls

 Check for existing reusable libraries to validate input,
and safely perform system functions, or develop your
own.

 Perform design and code reviews on the reusable
libraries to ensure security.

Other common methods of protection include:
 Use stored Procedures
 Data validation (to ensure input isn't malicious

code),
 Run commands with very minimal privileges
 If the application is compromised, the damage

will be minimized.
Using Inline Queries is not the best way as we are writing
business logic inline. Every time we have to write again this
query. The best way to prevent from SQL injection is use stored
procedure. As business logic are hidden, it provides better
performance, reusability.

Figure 4.3.2: Vulnerable Page

Figure 4.3.3: Countermeasure for SQL Injection

4.4 URL Redirection and URL Routing
URL parameters must be encrypted and different name should be
given as parameter.
Server side validations should be performed to check whether
they are white list url’s.

Page extensions like aspx, php, jsp, nl are hidden from public
users. Routing is implemented as a countermeasure. Page name
cannot be seen even in page properties or in any of the tools.
Ex: http://localhost:64690/Category/ProductList.aspx
4.4.1 Countermeasure:
http://localhost:64690/Category/Cars
http://localhost:64690/Category/Planes

4.5 Insecure Direct Object Reference
A direct object reference occurs when a developer exposes a
reference to an internal implementation object, such as a file,
directory, database record, or key, as a URL or form parameter.
Attackers can manipulate those references to access other objects
without authorization.

 Applications often expose internal objects, making them
accessible via parameters.

 When those objects are exposed, the attacker may
manipulate unauthorized objects, if proper access
controls are not in place.

 Internal Objects might include
 Files or Directories
 URLs

Database key, such as acct_no, group_id etc.

4.5.1 Countermeasure for Insecure Direct Object Reference

• Do not expose direct objects via parameters

• Use an indirect mapping which is simple to validate.

• Re-verify authorization at every reference.
For example: Application provided an initial lists of only
the authorized options. When user’s option is
“submitted” as a parameter, authorization must be
checked again.

IJSER

http://www.ijser.org/
http://localhost:64690/Category/ProductList.aspx
http://localhost:64690/Category/Cars
http://localhost:64690/Category/Planes

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 665
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 4.5.1: Account Information for 1344573490

Figure 4.5.2: Changing account number parameter from
1344573490 to 1344573491

4.6 Cryptographic algorithms
The use of a non-standard algorithm is dangerous because a
determined attacker may be able to break the algorithm and
compromise whatever data has been protected. Well-known
techniques may exist to break the algorithm [6].

4.6.1 Countermeasure for Cryptographic algorithm

Check algorithms whether they are broken or safe in CWE
(Common Weakness Enumeration) site.

5 CONCLUSION
The security standards set by OWASP for the websites should be
followed. The applications must take care of all the major
vulnerabilities that an attacker targets.
Web applications have been evolving extraordinarily fast with
new programming models and new emerging technologies, so
there are lot of new challenges in web application security, which
requires a lot of effort from security researchers.
Web applications reach out to a larger number of users, and yet
they are more vulnerable to attacks. Many companies have
starting Security Code reviews, extensive penetration testing to
secure their websites and also there client sites.
In this paper, we have demonstrated several common web
application vulnerabilities, their countermeasures and their
criticality.

https://www.owasp.org/index.php/Main_Page
[2] “Web application security vulnerabilities detection

approaches: A systematic mapping study“
https://www.computer.org/csdl/proceedings/snpd/2015
/8676/00/07176244.pdf

[3] “Vulnerability (computing)”
https://en.wikipedia.org/wiki/Vulnerability_(computing)

[4] “A Survey on Web Application Security”
https://pdfs.semanticscholar.org/4090/860cf6eb3c574bc41
612585fb9452251b37.pdf

[5] “Understanding Web Application Security Defending the
Enterprise’s New Porous Perimeter by Extending Security
to the Edge”
https://www.motiv.nl/documenten/whitepapers/akamai
-web-application-security-whitepaper.pdf

[6] “Use of a Broken or Risky Cryptographic Algorithm”
https://cwe.mitre.org/data/definitions/327.html

IJSER

http://www.ijser.org/
https://www.owasp.org/index.php/Main_Page
https://www.computer.org/csdl/proceedings/snpd/2015/8676/00/07176244.pdf
https://www.computer.org/csdl/proceedings/snpd/2015/8676/00/07176244.pdf
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://pdfs.semanticscholar.org/4090/860cf6eb3c574bc41612585fb9452251b37.pdf
https://pdfs.semanticscholar.org/4090/860cf6eb3c574bc41612585fb9452251b37.pdf
https://www.motiv.nl/documenten/whitepapers/akamai-web-application-security-whitepaper.pdf
https://www.motiv.nl/documenten/whitepapers/akamai-web-application-security-whitepaper.pdf
https://cwe.mitre.org/data/definitions/327.html

	1 Introduction
	2 Procedure for Paper Submission
	3 Literature Survey
	4 VULNERABILITIES
	4.1 CROSS SITE SCRIPTING
	4.2 Cross Site Request Forgery (CSRF)
	4.3 SQL injection
	4.5 Insecure Direct Object Reference
	4.6 Cryptographic algorithms

